


Foam Skin Insulated & AP Sheathed (ALPETH) Jelly Filled Cables to GR-421

Application

The cables are designed for use in access or trunk networks, from telephone exchange to subscriber area. The cables are suitable for installation in ducts, direct burial in the ground and also for aerial installation with integral suspension strand. Jelly filled option is for subscriber's cables installed underground or along the edge of pavement. An armoured option is offered for direct burial installations where additional mechanical or rodent protection is required. A figure-8 self support option is offered for aerial installation.

Standards Telcordia (Bellcore) GR-421

Construction

Conductors: Solid annealed bare copper, 0.4/0.5/0.63/0.9mm as per ASTM B-3/class 1 of IEC 60028

Foam Skin which is a composite polyethylene insulation made of an inner cellular layer and an outer Insulation:

solid skin as per ASTM D 1248/IEC 60708

Twisted Pairs: Insulated conductors are twisted into pairs with varying lay length to minimize crosstalk

Cabling Element: Twisted Pairs

Cable Core **Assembly:**

Cables with up to 400 pairs are composed of 25-pair units or 12/13-pair units; cables with over 400 pairs are composed of 50 or 100-pair units. Any extra pairs form a separate unit. Units are identified by colour coded binders. Standard construction is per GR-421 given in Cable Make Up Diagram

One or more non-hygroscopic polyester tapes are helically or longitudinally laid with an overlap. **Core Wrapping:** These tapes furnish thermal, mechanical as well as high dielectric protection between shielding and

individual conductors

Moisture Barrier:

Filling:

A layer of bare aluminium tape (0.2mm/8mil) is applied longitudinally with overlap over the cable core to provide 100% electrical shielding coverage and ensures a barrier against water vapor. In cables with more than 200 pairs, the aluminum tape may be corrugated for improved cable flexibility

The cable core interstices are filled with petroleum jelly to avoid longitudinal water penetration within the cable. The water resistant filling compound is applied to the air space between non-hygroscopic

tape and shield, shield and sheath within the cable core

Black low density polyethylene as per ASTM D 1248/IEC 60708, being able to withstand exposure Sheath: to sunlight, temperature variations, ground chemicals and other environmental contaminants

Ripcord: Ripcord may be provided for slitting the sheath longitudinally to facilitate its removal

Spare Pairs Spare pairs may be incorporated for large pair cables (optional):

T: 86 531-88817113 Universal Cables Ltd F: 86 531-88819113 E: sales@uecable.com www.uecable.com

Continuity Wire (optional):	Tinned copper drain wire may be longitudinally laid to ensure electrical continuity of the screen										
Optional Construct	ion										
Armoured Cable	Steel wire armour or corrugated steel tape armour applied over an optional inner polyethylene sheath. For steel tape version, the 0.15mm/6mil thick steel tape is coated with a copolymer and applied with an overlap. An outer polyethylene sheath is applied over the armour										
Self-Support Cables	A 7-strand galvanized steel strand is used as support wire. Black polyethylene sheath covers both core and support wire in a figure-8 construction										
Electrical Propertie	s										
Nominal Conductor Diameter		mm		0.4	0.5	0.63	0.9				
Conductor Gauge Size		AWG		26	24	22	19				
Maximum Average DC Resistance		Ω /km Ω /mile	1	140/225	87/140	55/88.6	27.0/43.4				
Maximum Individual DC Resistance		Ω /km Ω /mile	1	144.2/232	89.5/144	56.5/91.0	28.0/45.0				
Minimum Insulation Resistance @500V DC		MΩ.km MΩ.mile	/	1600/1000	1600/1000	1600/1000	1600/1000				
Maximum Average Resistance Unbalance		%		1.5	1.5	1.5	1.5				
Maximum Individual Resistance Unbalance		%		5	5	5	5				
Average Mutual Capacitance		nF/km nF/kft	1	48.5-54.0	48.5-54.0	48.5-54.0	48.5-54.0				
				/14.8-16.5	/14.8-16.5	/14.8-16.5	/14.8-16.5				
Maximum Individual Mutual Capacitance		nF/km nF/kft	/	57/17.4	57/17.4	57/17.4	57/17.4				
Maximum Individu pair-to-pair	ual Capacitance Unbalance	pF/km pF/kft	1	145/44	145/44	145/44	145/44				
Capacitance Unbal	ance RMS pair-to-pair	pF/km pF/kft	1	45/13.7	45/13.7	45/13.7	45/13.7				
Maximum Individu pair-to-ground	ual Capacitance Unbalance	pF/km pF/kft	1	2625/800	2625/800	2625/800	2625/800				
Maximum Average to-ground	Capacitance Unbalance pair-	pF/km pF/kft	1	574/175	574/175	574/175	574/175				
Maximum Conduct	or Loop Resistance @20°C	Ω /km Ω /mile	1	300/482	192/309	114/183.6	60/96.4				
Impedance @1KHz		Ω		994	796	660	445				
Impedance @100KHz		Ω		147	134	125	122				

Universal Cables Ltd T: 86 531-88817113 F: 86 531-88819113 E: sales@uecable.com www.uecable.com

Impedance @512KHz	Ω		120	118	117	116		
Impedance @1MHz	Ω		117	115	114	113		
Maximum Average Attenuation @0.8KHz	dB/km dB/kft	1	1.64/0.5	1.30/0.39	1.04/0.32	0.74/0.22		
Maximum Average Attenuation @1KHz	dB/km dB/kft	1	1.68/0.51	1.35/0.41	1.08/0.33	0.76/0.23		
Maximum Average Attenuation @3KHz	dB/km dB/kft	1	3.18/0.97	2.52/0.77	2.01/0.61	1.42/0.43		
Maximum Average Attenuation @150KHz	dB/km dB/kft	1	11.4/3.47	8.3/2.53	6.2/1.89	4.4/1.34		
Maximum Average Attenuation @772KHz	dB/km dB/kft	1	24.3/7.4	19.4/5.9	15.4/4.7	10.8/3.3		
Maximum Average Attenuation @1000KHz	dB/km dB/kft	1	27.1/8.25	21.4/6.52	17.5/5.33	12.8/3.89		
Dielectric Strength								
Conductor to Conductor (3secs)	V DC		2400	3000	4000	5000		
Conductor to Screen (3secs)	V DC		10000	10000	10000	10000		

Universal Cables Ltd T: 86 531-88817113 F: 86 531-88819113 E: sales@uecable.com www.uecable.com